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Abstract  
 

Brain-computer interface (BCI) is a novel technology that is assisting not 

only disabled people but also healthy people to control an external device 

by using motor imagery (MI). Although much work has been done in 

BCI system, achieving ideal accuracy has not been achieved due to the 

difficulty of pattern recognition of EEG signals. BCI systems are made 

up of various components that perform preprocessing, feature extraction, 

and decision making. Common spatial pattern (CSP) is an effective 

algorithm which is extensively used in extracting feature of EEG motor 

imagery task. In this article, the CSP algorithm has extended to multi-

class classification by one-versus-one (OVO) and one-versus-rest (OVR) 

methods. To improve classifier in terms of accuracy and less complexity, 

Fisher algorithm has been used. The average accuracy 73.41 ± 1.62 has 

been achieved on BCI Competition IV-IIa dataset. The experimental 

results show that the Fisher algorithm in reducing complexity and 

increasing the accuracy of classifier has been effective.  
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Introduction 
Brain-computer interface technology establishes a way of communication between the human brain and 

other external equipment so that one can control external equipment by analyzing brain signals. BCI 

divided into invasive and noninvasive category which in invasive one, signals are achieved by electrodes 

on the skin of brain and the surgery is needed but the other one, signals are achieved by electrodes on 

the surface of the scalp so there is no need to surgery (Baig et al, 2017).  

So many people around the world lose their ability not only to move their body parts but also their ability 

to speak due to accidents, aging or congenital. Some people because of sickness like amyotrophic lateral 

sclerosis (ALS), locked-in syndrome, Lou Gehrig’s disease and high spinal cord injury cannot control 

their muscle to do even simple routine things (Dong et al, 2017). Not only BCI can play a prominent 

role in applications like medical, robotic, game, etc. but also they can help people to control their 

environment without using their muscles. 

BCIs based on motor imagery task because of simplicity, flexibility, noninvasive, good spatial accuracy 

and low equipment cost have been noticed a lot (Luo et al, 2020). In motor imagery task, asked people 

to imagine a task without any Physical or verbal expression then their brain signals achieved by a 

computer to recognize what imagined task is.  

There are many challenges across the BCI based on motor imagery task which the most important one 

is the quality of EEG  signal because they are contaminated easily by noise and different artifacts like 

muscle movement, blinking, heart rate, magnetic field of the environment, etc (He et al, 2018). 

Consequently, spatial and temporal filter are important to increase the signal-to-noise ratio of EEG 

signals (Blankertz et al, 2007). CSP has had good performances in extracting features from EEG based 

on motor imagery tasks (Dong et al, 2017 Belhadj et al, 2015 Ma et al, 2016 Zhang et al, 2015 Mishuhina 

and Jiang, 2018) and they are better in binary class motor imagery tasks. The performance of the CSP 

algorithm is affected by the number of train data and sensitive to noise so the regularized CSP (R-CSP) 

algorithm was introduced to overcome the problem of small training data set and noise (Lotte and Guan 

et al, 2010). Another issue in CSP is the choice of the optimal frequency band. The filter bank CSP 

(FBCSP) algorithm, which won the BCI IV Competition, was presented for this purpose. Many kinds 

of research have been done on the selection of the optimal frequency band. 

Application of deep learning (DL) methods in BCI for classification of EEG recordings have confronted 

two main challenges: lack of large data set and privacy concern. Due to gathering large dataset are time-

consuming and expensive, there are multiple small EEG-BCI dataset around the world. On the other 

hand, because there is potential abuse of EEG data which may lead to privacy violation, organizations 

should have explicit participant approval to exchange data. To tackle these problems, for example, in 

(Ju et al, 2020) has used federated learning and has reached state-of-art results. 

Section Dataset describes important database information. Section Methods details all stages of the 

experiments. Section Experimental Results presents the results of the classification and discusses the 

advantages and disadvantages of the proposed method. Finally, Section Conclusion draws conclusions. 

 

Dataset  
The database used in this article is related to BCI Competition IV-IIa, which includes 4 motor imagery 

tasks, left hand movement, right hand movement, foot movement and tongue movement. The number 

of channels or electrodes is 25 which 22 is related to EEG signals and the other 3 channels are related 



 

  

 

to EOG signal. The sampling rate is 250 HZ. The schedule of motor imagery tasks performed is shown 

in Fig. 1. EEG data were recorded in two sessions on different days to consider the nature of the 

instability of the EEG data. Each session consists of 6 run with a short break between each run. In each 

run, for each motor imagery task, 12 trials are recorded, in total, 48 trials are recorded, so in each session, 

288 trials are recorded (72 trials for each mental activity). See (Brunner et al, 2008) for more information 

about the database. 

 

 
(a) 

 

 
(b) 

Fig. 1. Database information ( (a) motor imagery task schedule and (b) a view of the electrodes location [11]) 

 

Methods 

  
Preprocessing  

The neurophysiological basis for motor imagery tasks is that in each motor imagery task, the frequency 

band power of the EEG sensory-motor rhythms, i.e. Mu rhythm (8 HZ to 13 HZ) and Beta rhythm (18 

HZ to 30 HZ) decreases or increases, which are called event-related desynchronization (ERD) / event-

related synchronization (ERS) (Pfurtscheller et al, 1999 Duan et al, 2017 ). As a result, we extract the 

Mu and Beta rhythms, that is, the frequency between 8 HZ to 30 HZ, with the help of a 5th order 

Butterworth bandpass filter, so that only the band information related to motor imagery remains in the 



 

  

 

EEG signal. According to (Lotte and Guan et al, 2010), we use the information of each trial from 0.5 to 

2.5 s after the cue instructing the subject to perform motor imagery task as done by the winner of BCI 

Competition IV, data set IIa. 

The 6-fold cross-validation method has been used to evaluate the results and prevent over-fitting. In 6 

fold, the data is randomly divided into 6 fold (9 trials for each layer). The cross-validation process is 

repeated 6 times so that all 6 fold are tested exactly once. 

 

Common Spatial Pattern 

Spatial filters are an important part of detecting neural changes in the motor cortex, which the most 

successful way to differentiate such changes is by common spatial patterns (CSP) (Gonzalez et al, 2018). 

CSP designs subject-based spatial filters, which linearly combine different channels to maximize the 

variance of filtered signals in one class and minimize in another class (Jiang et al, 2020). This paper 

uses traditional CSP and uses one-versus-rest (OVR) and one-versus-one (OVO) strategies (Dong et al, 

2017) to extend it to multi-classes. 

Suppose 𝑋𝑐,𝑖 (𝑖 ∈ 1,2, … , 𝑛 , 𝑐 ∈ 1,2, … , 𝑘) represents the 𝑖-th trail of class c (n is equal to the number 

of trials in each class and k is equal to the number of classes). Each trial 𝑋 ∈ 𝑅𝑀×𝑁, depends on the 

number of channels and the sampling rate that 𝑀 indicates the number of channels and 𝑁 indicates the 

number of samples in each time period. 

Traditional CSP is formulated as follows: 

 

W = argmaxw
WTC1W

WTC2W
                              (1) 

 

CSP look for spatial filters 𝑊 ∈ 𝑅𝑀′×𝑁 that 𝑊 are the spatial filters and 𝐶𝑘 (𝑘 = 1,2) is the mean of 

the normalized covariance matrix related to the 𝑘-th class calculated as follows: 

 

𝐶𝑘 =
1

𝑛
∑

𝑋𝑘,𝑖𝑋𝑘,𝑖
𝑇

𝑡𝑟𝑎𝑐𝑒(𝑋𝑘,𝑖𝑋𝑘,𝑖
𝑇 )

𝑛
𝑖=1                            (2) 

 

𝑛 is the number of trial related to class 𝑘. The composite covariance matrix is defined as follows: 

 

𝐶𝑐 = 𝑐1 + 𝑐2                                                   (3) 

 

Its SVD is as follows: 

 

𝐶𝑐 = 𝑈𝑐Λ𝑐𝑈𝑐
𝑇                         

 (4) 

 

𝑈𝑐 is an eigenvector matrix, each column forms an eigenvector. Eigenvectors, each corresponding to 

one of the eigenvalues in the diagonal matrix Λ𝑐 (eigenvalue matrix). Also, 𝑈𝑐is a unit  matrix. so 

𝑈𝑐𝑈𝑐
𝑇 = 𝐼. whitening transformation is equal to: 

 

𝑃 = Λ𝑐

−
1

2𝑈𝑐
𝑇            (5) 

 

Because: 

 

𝑃𝐶𝑐𝑃𝑇 = √Λ𝑐
−1𝑈𝑐

𝑇𝐶𝑐𝑈𝑐
√Λ𝑐

−1𝑇
 



 

  

 

             = √Λ𝑐
−1𝑈𝑐

𝑇[𝑈𝑐Λ𝑐𝑈𝑐
𝑇]𝑈𝑐

√Λ𝑐
−1𝑇

 

              = 𝐼 
 

It means, this transformation makes the composite covariance matrix diagonal (identical matrix). By 

applying the whitening transformation to 𝐶1 and 𝐶2we have: 

 

𝑆1 = 𝑃𝐶1𝑃𝑇              (6) 

 

𝑆2 = 𝑃𝐶2𝑃𝑇              (7) 

 

SVD of 𝑆1 and 𝑆2 : 

 

𝑆1 = 𝐵Λ1𝐵𝑇              (8) 

 

𝑆2 = 𝐵Λ2𝐵𝑇              (9) 

 

That the sum of Λ2 and Λ1 is a unit matrix: Λ1 + Λ2 = 𝐼, which means that the largest eigenvalue in 𝑆1 

corresponds to the smallest eigenvalue in 𝑆2. Eigenvectors 𝐵 are used to classify the two classes. Spatial 

filters matrix: 

 

𝑊 = 𝐵𝑇𝑃            (10) 

 

As a result, the trials are mapped as follows: 

 

𝑌𝑖 = 𝑊𝑋𝑖            (11) 

 

The reduced features are obtained by mapping the trial 𝑋𝑖 to 𝑌𝑖 corresponding to 𝑚 from the smallest 

and largest Λ1 (or Λ2). There is no definite evidence that performance improved with increasing 𝑚 

(Kang et al, 2009) but for example in (Ramoser et al, 2000 Müller-Gerking et al, 1999), it is suggested 

that 𝑚 = 2 or 𝑚 = 3 have good experimental performance. In this article, we have considered  𝑚 = 3. 

In summary, the procedure for calculating spatial filters 𝑊 ∈ 𝑅𝑀′×𝑁 is as follows: 

 

1) Calculate 𝐶𝑐  𝑖𝑛 (3) 𝑎𝑛𝑑 𝑖𝑡𝑠 𝑆𝑉𝐷 𝑖𝑛 (4) 

 

2) Calculate whitening matrix 𝑃 in (5) 

 

3) Calculate 𝑆1 in (6) and its SVD in (8) 

 

4) Arrange the elements of diameter Λ1in descending order and arrange the columns of the matrix 

𝐵 accordingly and finally create the matrix 𝐵 from the 𝑚 first column and 𝑚the last column of 

the matrix 𝐵 

 

5) Calculate 𝑊 = 𝐵𝑇𝑃  
 

The feature vector 𝑓𝑖 for the 𝑋𝑖trial is calculated as follows: 

 

[𝑓𝑖] = log (
𝑣𝑎𝑟(𝑦𝑖)

∑ 𝑎𝑟(𝑦𝑖)𝑣
𝑖=1

)                     (12) 

 



 

  

 

Finally, the combined feature vector resulting from the OVO and OVR strategies is as follows: 

𝑓 = [𝑓12, 𝑓13, 𝑓14, 𝑓23, 𝑓24, 𝑓34, 𝑓1, 𝑓2, 𝑓3, 𝑓4]                                 (13) 

 

which 𝑓12, 𝑓13, 𝑓14, 𝑓23, 𝑓24, 𝑓34 are feature vectors corresponding to the strategy OVO and 𝑓1, 𝑓2, 𝑓3, 𝑓4 

are the feature vectors corresponding to the OVR strategy. 

 

Feature Selection 

One of the most important reasons for feature selection is the peaking phenomenon, which is indicated 

in Fig. 2. The peaking phenomenon alone demonstrates the importance of using the right amount (neither 

too much nor too little) of features. Feature selection can reduce computational complexity (both in 

terms of execution load and storage). 

 

 
Fig. 2. Picking phenomenon as the number of features increases from one point onwards, the classification error 

increases. 

 

Different types of feature selection methods can be divided into 3 general categories: filter, wrapper and 

hybrid methods, each with its own advantages and disadvantages. Filter methods do not use classifier 

during feature selection, which can be both an advantage and a disadvantage of these methods. The 

advantage of this approach is that the execution time of the algorithm is very low and in a very short 

time without using the model, features are scored then a number of features are selected depending on 

the needs. The disadvantage of this approach is that because the classifier don’t participate in feature 

selection process, the appropriate features for the classifier may not be selected. Unlike filter methods, 

wrapper methods use the classifier during feature selection so considering the relationship between 

features. These methods try to choose the best combination of available features. Wrapper methods are 

time consuming because they keep the model informed of feature selection, and may be costly when the 

number of features increases. Hybrid methods try to combine the two methods of scalar and vector, to 

perform the problem of feature selection faster than the wrapper method and more efficient.  

The fisher discriminant ratio (FDR) method is one of the filter methods and based on the two parameters 

of mean and variance of a feature, determines its importance for classifying data of two or more classes. 

In this method, according to the relation: 

 

𝐹𝑟𝑎𝑡𝑖𝑜 =
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑚𝑒𝑎𝑛𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠𝑒𝑠
 

 

So: 

 



 

  

 

𝐹𝑟𝑎𝑡𝑖𝑜 =
1

𝑘
∑ (μ𝑗−μ̅)

2𝑘
𝑗=1

1

𝑘
∑

1

𝑛𝑗

𝑘
𝑗=1 ∑ (𝑥𝑖𝑗−μ𝑗)

2𝑛𝑗
𝑖=1

           (14) 

 

The value obtained determines the importance of the feature (𝑘 is the number of classes, μ𝑗 is the average 

of class 𝑗-th, μ̅ is the average of the total data and 𝑛𝑗 is the number of instances of the class 𝑗). For each 

feature, the value 𝐹𝑟𝑎𝑡𝑖𝑜 is calculated and based on it features are ranked. After ranking the features, 

determining the number of properties is a hyperparameter. Fig. 3 shows the results of classifying the 

participant 1 based on the number of selected features, and by experimenting with other participants, we 

have considered the number of features to be 10. Our overall framework has been demonstrated in Fig. 

4. 

 

 
Fig. 3. Accuracy of classification based on the number of features selected in participant 1 

 

 

 

Fig. 4. Overall framework 

 

 

 



 

  

 

Experimental Results 

Experiments were performed using OVO-OVR CSP. In this article, we have used the linear discriminant 

analysis (LDA) as a classifier and to evaluate the results, we have used a 6-fold cross-validation with 50 

run to get statistically meaningful results. Fig. 5 shows the results of the classification that the best 

accuracy for participant 9 is 94.58 ± 1.7 (mean ± standard deviation) and the overall accuracy  among 

all participants is 73.41 ± 1.62. Two-way ANOVA was used to evaluate the accuracy obtained for 9 

participants, which showed a significant difference (𝐹8,49 = 830.66  𝑃 = 1.7 × 10−240). The results 

obtained in this article are compared with other articles which used the same method but without feature 

selection (see Table I ). In (Dong et al, 2017), the number of features extracted is equal to 20, which we 

have reduced to 10, as well as the average total accuracy and accuracy obtained in 6 of the participants 

has increased. In (He et al, 2018), the EEG data were preprocessed by EEGLAB, although the total 

accuracy obtained are almost the same but the number of features extracted from 60 decreased to 10. 

 

Table 1. A comparison between the results of this paper and other related work based on the accuracy index 

Algorithm  Sub 

1 

Sub 

2 

Sub 

3 

Sub 

4 

Sub 

5 

Sub 

6 

Sub 

7 

Sub 

8 

Sub 9 Mean ± std 

OVR-OVO CSP + 

HSVM (Dong et al, 

2017) 

68 72 82.1 45 40 38 76 78 74 64.4 ± 16.7 

CSP + LDA (He et al, 

2018) 

82 61 96 63 53 60.5 68 95 88 74 

Our work 75.87 65.69 86.99 56.38 59.56 66.33 66.98 88.34 94.58 73.41 
± 1.62 

 

 

 

Fig. 5. The box plot of the accuracy obtained for each database participant 

 

Conclusion  

CSP is one of the most popular spatial filtering methods in brain-computer interfaces based on EEG 

data, especially in motor imagery task applications. CSP is used to increase the signal-to-noise ratio of 

EEG before giving to the classifier. In this paper described how to apply CSP to EEG  data, extend it to 

multi-classes using the OVO and OVR  methods, and reduce feature dimensions with the Fisher 



 

  

 

algorithm. The results of experiments on motor imagery data showed that the Fisher algorithm improved 

the model in terms of accuracy and reduced the complexity of the model. 
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