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Abstract  
 

There is a useful method for quick and efficient tracking of multiple 

objects called simple online and real-time tracking (SORT). By adding 

visual information, SORT algorithm performance can be improved. The 

number of identity switches can be minimized by this. A deep network 

that is offline on a wide data set of qualified pedestrians has been used 

since the main structure of the algorithm has a lot of computational 

complexity. In order to extract more and higher quality visual 

information that can assist the object recognition algorithm, the focus of 

this article is on the design of this deep network. To enhance data 

association efficiency, the paper also used a particle filter instead of a 

Kalman filter. On two standard datasets, MOT16 and MOT17, we 

checked our proposed method and compared its performance with other 

available methods. The results indicate that, relative to the current 

methods in this area, the tracking accuracy (52.2) on the MOT17 

dataset is increased. Experimental assessment demonstrates that in 

dynamic settings, our proposed architecture increases the number of 

identity switches and preferably tracks goals. 
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Introduction 
In the accuracy and efficiency of object detectors, especially ordinary detectors, recent developments 

have inspired and provoked multi-target tracking methods by noticing them [1, 2]. These techniques 

operate in such a way that, by means of a first-rate object detector, they detect the targets for each 

frame and these detections are compatible with the application of online and offline trackers [4, 5]. 

These methods are acceptable in cases such as pedestrian tracking, where the goal feature is 

discriminatory and the target shows a simple motion pattern [6,5]. There are trackers, too, that rely less 

on appearance than others. In order to get used to the algorithms in these potential situations, they also 

need a large number of variables and skills to be tuned [8, 9,11]. 

Tracking-by detection has recently evolved into the most important model of compound object 

tracking, as described earlier, in object recognition. In this way, in a global optimization problem, we 

usually find object trajectories, which advance the entire batches of video immediately. Flow network 

formulations [5, 14] and probabilistic graphical models [15, 8, 17] are the most common frameworks 

of this kind. These methods may not be acceptable in online circumstances in which the target should 

be addressed individually, step by step. For each frame base, the Joint Probabilistic Data Association 

Filter (JPDAF)[19] and Multiple Hypothesis Tracking (MHT)[18] present the data association. Such 

approaches are among the common and traditional techniques that exist in this area. 

Since the speed of a large number of accurate trackers is considered too slow for real-time 

applications, the fairly obvious trade-off between accuracy and speed is evident. Simple online and 

real-time tracking (SORT) [20] is one of the simple frameworks that aims to improve both speed and 

precision. By applying the Hungarian approach with an association metric that tests bounding box 

overlap, which is Kalman filtering, the output of this method is in image space and data relation for 

each frame. At high frame rates, this undemanding technique achieves positive results. 

SORT carries out quite a large number of identity transformations. The explanation for this is that 

when state evaluation uncertainty is sluggish, the employed association metric is accurate. As a result, 

SORT has a lack of blockage tracking since they are usually visible in the front section of camera 

views. We alter the place of the association metric with a more informed metric that incorporates 

motion and shape data as a solution to this problem. In comparison to deep sorting architectures, we 

used the deep neural network to integrate motion and appearance information [21]. We also 

substituted a particle filter for the Kalman filter. The value of the algorithm for particle filters is its 

simplicity and flexibility. Also, working with the model of the Gaussian multimodality system is 

undemanding. A great deal of related literature is given in [42]. Unlike measurement supplies, facts 

and data can be used in a particle filter system, which has greatly enhanced the efficiency of tracking. 

By a combination of this network, we build toughness against misses and occlusions at the same time 

as we keep the framework easy to implement and well-organized and applicable to online scenarios. 

The following sections are arranged in this paper: Section 2 provides a brief evaluation of related 

literature in the field of multiple object tracking. Until a demonstration of the expected framework 

functionality on standard benchmark series in Section 4 is completed, Section 3 proposes our approach 

and deep network architecture. Finally, Section 5 provides us with a summary of the findings learned 

and addresses future developments. 

 

Related Works 
Multi-object tracking has been overcome generally and conventionally by the Joint Probabilistic Data 

Association (JPDA) filters [22,23]and Multiple Hypothesis Tracking (MHT) [19]. Despite the fact that 

there is considerable uncertainty in object assignments, they postpone making complex decisions. The 

number of tracked objects raises the complexity of integrating these techniques, making them 

inefficient for simultaneous purposes in highly active environments. In visual multiple object tracking 

(MOT), the JPDA formulation [22] is considered by Reza tofighi et al [23]. His aim was to resolve the  



 

  

 

 

problems of combinational complexity in the resolution of integer programs. Kim et al. [24] applied 

the exterior model for every target in order to reduce the MHT chart. she wanted to accomplish state-

of-the-art presentation. Such methods, however, put off the conclusion that online tracking is 

unacceptable. 
 Typical multi-target trackings are known as a network flow problem [5] or its variation [14]. Most of 

these methods rely on a large number of object shapes and assume that their goals are basic motion 

models. They work well in environments and pedestrians or means of transportation are the goals. One 

of the disadvantages of implementing the formulation of a network flow is that it has to plan starting 

and finishing positions and/or goal times that might be difficult to define in the future. Brendel et al. 

[6], while considering only two-frame relations, applied an extremely serious set formulation. 
Zamir et al [26] propose the implementation of a General Maximum Clique partitioning formulation. 

This technique selects the largest candidate from each tracklet with the goal of achieving global 

association. The formulation of the linear assignment [11,14,15] is comparable with the generalized 

linear assignment (GLA). The positive thing about it, however, is that it allows tracks to start and end 

anywhere in time and place. 
The method of MOT solver is suggested by Braso et al [3]. This approach is based on networks 

exchanging messages. To present both function learning and final result estimation, it utilizes the 

natural graph problem structure. They propose a novel time-aware neural message passing update 

stage that is inspired by classic graph MOT formulations. 
The strategy for several tracking techniques is to shape online education models of both objects 

[27,29] and the global model [30,33]. Motion is also incorporated to assist related tracklet detection 

[34,30], as well as patterns of appearance. When one-to-one correspondence models are considered, 

uniformly ideal solutions such as the Hungarian algorithm [35] can be applied [37]. 
The system of Geiger et al. [37] applies the Hungarian algorithm [35] in a couple of steps process. The 

earliest stage is when tracklets are formed with connecting detections from corner to corner of closest 

frames, where geometry and type signals are exchanged to shape the similarity matrix. Subsequently, 

by using geometry and appearance signals, the tracklets are linked to another to reconnect broken 

trajectories caused by occlusion. The union technique of these pair measures restricts this approach to 

batch computation. 
To develop SORT efficiency, the Nicolai Wojke et al. [21] method combines appearance information. 

Throughout longer phases of occlusions, they will follow targets and successfully drop the amount of 

identity switched down induced by this Extension. However, as discussed in the following section, we 

use new deep network architectures for appearance descriptors. 
 

Methodology 
This strategy is expressed through the methodology of standard assumption tracking with recursive 

particle filtering and data link for each frame. In the next sections, the various parts of this system and 

our anticipated technique will be developed. 

 
Detection and state estimation 

The results of identification in data association based on MOT have a strong influence on the 

presentation of tracking. The original formulation in [22] is accompanied by both the Detection and 

Kalman filtering framework.  
Instead of using the Kalman filter, we used the Particle filter to track targets according to the concept 

set out in [43], and we were inspired by their concept. In the paper, a target tracking algorithm is 

designed that integrates the particle filter and convolution network. In the particle filter system, the 

extracted function from convolutional networks is represented. The target local and spatial data are 

fully applied in order to indicate the state shift of the entity. The local shape alteration and partial 

occlusion problem of the target are best figured out as the global information sections of the particle  



 

  

 

 

filter are integrated in order to find out the condition of the current targets. This is based on the target 

state that is dealt with various details. 

We assume a very common tracking situation in which the camera is uncalibrated also there is no ego-

motion data in hand, which is the most popular setup measured in the latest multiple object tracking 

benchmarks [38], as stated in [21]. The linear steady fast model, which does not depend on more 

objects or camera movement, estimates the inter-frame movements for each object. Every target's 

location is designed as: 

(1)  

 
Where μ and v indicate the horizontal and vertical pixel position of the target center, the aspect ratio γ, 

height h, and their respective velocities in the image are coordinated. In order to renew the target 

location, the detected bounding box is applied, where the velocity mechanism is resolved in the best 

and most favorable way by using a particle filter frame when an object is discovered. Basically, by 

applying the linear velocity form, the position is predicted without modification if no recognition is 

connected to the target. For each track in this method, we count the frame numbers from the prior 

effective measurement association. This counter is increased and reorganized to 0 during the 

prediction of the particle filter when the track has been linked with a measurement. If the tracks are 

over the pre-arranged maximum age, we take them out of the track collection. For any detection that is 

not capable of being linked with an access track, a new track hypothesis is arranged. Throughout their 

initial three structures, these up-to-the-minute tracks are structured as uncertain. During each time 

phase, we look forward to a flourishing measurement association. 

 
Data Association 
Each goal bounding box geometry is anticipated in the recent framework by forecasting its new status 

while our intention is to define detections for achievable targets. The cost matrix task will be measured 

as the intersection-over-union (IOU) space between of recognition and the entire bounding boxes 

predicted from the objects presented. The assignment is solved optimally by using the Hungarian 

algorithm. We combine details of motion and appearance by arranging two appropriate metrics for this 

formulation of the issue. 
To formulate a problem, as we discussed earlier, we need to merge motion and appearance data. 

Between predicted particle states, we use the Mahalanobis space plus recently arrived evaluations. 

Camera motions that are not counted could lead to rapid disarticulations in the image surface, 

especially by making the Mahalanobis distance another unconscious metric for tracking through 

occlusions. It is therefore so much easier to combine the second metric into the assignment problem. 

For each bounding box detection, a shape descriptor rj with is determined. Gallery 

 of the last Lk = 100 descriptors of the connected form are kept for each k track. After 

that, the smallest cosine space between the i-th track and j-th identification in shape space is the 

following metric procedure: 

 

(2)  

 
The Mahalanobis distance offers details about possible positions of objects based on short-term 

predictions of motion that are especially realistic. Whereas, when movement is less discriminatory, the 

cosine space considers type data that are fundamentally realistic in the direction of enhancing 

identities later than long-term occlusions. 

 

 



 

  

 

 

Appearance Feature  
The space between shape characteristics is used to compute the significance of similarity in data 

association. For comparable identity individuals, the importance of affinity must be outsized and broad 

and undersized for individuals with different identities, based on the optimal and desirable appearance 

characteristics. The appearance function in our operation is extracted by using a network that is 

presented in Figure 1 and Table1 in our network architecture. 
On the basis of the results and experiences obtained, it can be said that in deep learning, the deeper the 

network, the better the network's accuracy, given that there are no problems with the vanishing 

gradient. Therefore, we tried to improve the precision of detection in the proposed architecture by 

deepening the grid and also using residual layers to prevent the gradient from disappearing. On MARS 

data collection, this method has been achieved and contains more than 1,100,000 images of 1,261 

pedestrians, which makes this entirely appropriate for deep metric learning in the situation of people 

monitoring. 

 
Table 1. Overview of the CNN architecture 
Name Patch Size/Stride Output Size 

Conv 1 
Conv 2 

Conv 3 

7×7/1 
5×5/1 

3×3/1 

32×128×64 
32×128×64 

32×128×64 

Batch and normalization 
Max Pool 4 

 
3×3/2 

32×128×64 
32×64×32 

Residual 5 
Residual 6 

Residual 7 

Residual 8 
Residual 9 

Residual 10 

Residual 11 
Residual 12 

3×3/1 
3×3/1 

3×3/2 

3×3/1 
3×3/2 

3×3/1 

3×3/2 
3×3/1 

32×64×32 
32×64×32 

64×32×16 

64×32×16 
128×16×8 

128×16×8 

256×8×4 
256×8×4 

Conv 13 

Conv 14 

3×3/1 

1×1/1 

256×8×4 

256×8×4 
Batch and normalization 

Avg Pool 15 

 

3×3/2 

256×8×4 

256×4×2 

Dense 15 
Dense 16 

Batch and normalization 

 256 
256 

256 

 

 
Figure 1. Overview of the CNN architecture 



 

  

 

 
Usually, our network is made of two elements. With phase 1 and similar padding in the first section, 

four convolutional layers are added. We have also applied batch normalization between every sheet. 

Batch normalization reduced the quantity through the movement of the concealed unit values 

(covariance shift). Batch normalization helps every network layer to learn that it is also more 

independent of other layers. In the next part, we added the eight remaining blocks of different sizes, 

one after the other. We increase the depth of the network to increase accuracy and minimize the 

amount of changes in individuality. We applied two compact layers of 250 as a final point in order to 

estimate the global feature map. And, right after adding a batch normalization layer, the final network 

output is achieved. 

It is important to learn decent mappings for unintentional initialization of weights from input to output 

in neural networks. There are some local minimums that may be trapped by back propagation since 

there is a large search space that includes several weights in training. On the other hand, the 

randomization function of weight initialization must be selected and carefully defined unless there is a 

great risk that the production of preparation has decreased to the point of uselessness. 

The Adam optimizer algorithm with a 1e-3 rate of learning was used in the learning process of this 

network. In a learning process of 200,000 iterations, the latest outcome of our proposed system, shown 

in Table 2 and Table 3, is obtained. 

 
 

TABLE 2. Performance of the proposed approach on MOT16 benchmark sequences 

 

Method  MOTA IDF1 MT ML FP FN IDSW 

GCRA[3] 48.2 48.6 12.9% 41.1% 5104 88586 821 

oICF [7] 

MOTDT[10] 

43.2 

47.6 

49.3 

50.9 

11.3% 

15.2% 

48.5% 

38.3% 

6651 

9253 

96515 

85431 

381 

792 

LMP[12] 

NOMT[31] 

MCjoint[13] 

48.8 

46.4 

47.1 

51.3 

53.3 

52.3 

18.2% 

18.3% 

20.4% 

40.1% 

41.4% 

46.9% 

6654 

9753 

6703 

86245 

87565 

89368 

481 

359 

370 

DMMOT[16] 

Deep SORT[21] 

46.1 

61.4 

54.8 

- 

17.4% 

32.8% 

42.7% 

18.2% 

7909 

12852 

89874 

56668 

532 

781 

Our method 57.9 49.7 29.9% 20.5% 5850 70985 330 

 

TABLE 3. Performance of the proposed approach on MOT17 benchmark sequences 

Method MOTA IDF1 MT ML FP FN IDSW 

MHT_DAM[24] 50.7 47.2 20.8% 36.9% 22875 252889 2314 

FWT [33] 

HAM_SADF17[41] 

51.3 

48.3 

47.6 

51.1 

21.4% 

17.1% 

35.2% 

41.7% 

24101 

20967 

247921 

269038 

2648 

1871 

EDMT17[32] 

MOTDT17[10] 

jCC[32] 

50.0 

50.9 

51.2 

51.3 

52.7 

54.5 

21.6% 

17.5% 

20.9% 

36.3% 

35.7% 

37.0% 

32279 

24069 

25937 

247297 

250768 

247822 

2264 

2474 

1802 

DMAN[16] 48.2 55.7 19.3% 38.3% 26218 263608 2194 

TNT[25] 

Our method 

51.9 

52.2 

58.0 

56.1 

23.5% 

21.3% 

35.5% 

37.1% 

37311 

26857 

231658 

237594 

2294 

1774 

 

 

We applied the Xavier or variance scaling approach for weight initialization. Compared with the 

immature weight scaling technique, the Xavier weight initialization technique is a great development. 

This technique helped us to increase the pace of the field of deep learning in a great way. It thus adapts 

itself according to the quantity of the weight values. The principle of these methods is that if you can 

keep the variance constant layer by layer in either the feed-forward or back-propagation direction, 

your network can learn optimally. Your weight will ultimately saturate your non-linear neurons in  



 

  

 

 

both positive and negative directions as you go through the layers, as if the variance boosts or 

decreases. This initialization was established to work better with the activation functions of ReLU in 

general, because in this network we apply the activation function of ReLU: 

 

(3) 
 

 

W represents the weights in the above formula and n represents the number of inputs for each node. 

This network essentially consists of 4,654,764 parameters and one forward pass of 32 bounding boxes 

that take on Nvidia Titan XP for around 19 ms. So, this network is suitable for online tracking if a 

modern GPU is available. 

 

Experiments 
In order to teach and evaluate our tracking performance, which includes either moving or static camera 

sequences, we use MOT16 and MOT17 datasets. In addition to top-down observation arrangements, 

this benchmark estimates the tracking output on seven challenging test sequences that involve front-

view scenes with a movable camera. Together with the MOT metrics [41], we use the assessment 

metrics defined in [40]: 

MOTA(↑): Multi-object tracking accuracy. 

IDF1(↑): the ratio of correctly identified detections over the average number of ground-truth and 

computed detections. 

MT(↑): the amount of mostly tracked trajectories. i.e. target has a similar label for at least 80% of its 

life span. 

ML(↓): the amount of mostly lost trajectories. i.e. target is not tracked for at least 20% of its life span. 

FP(↓):the amount of false detections. 

FN(↓):the amount of missed detections. 

IDsw( ↓):the amount of times ID switches to a dissimilar formerly tracked purpose. 

Estimation procedures with (↑), upper scores signify improved performance; while for evaluation 

procedures with (↓), minor scores denote better performance. 

 

 
Figure 2: In an ordinary tracking situation with normal occlusion, our system representative 

performance on the MOT challenge data collection. 

 

In order to apply the MOT benchmark [38] test server, tracking output is calculated where the ground 

precision is suspended for 11 sequences. In Table 2 and Table 3, several other baseline trackers are 

assessed with the suggested SORT process. This strategy has effectively eased the number of identity 

switches. 

We understand that a small increase is primarily the number of tracked objects and the decrease in 

usually missing objects. Generally, due to the combination of appearance details, we effectively  



 

  

 

 

maintain identities through longer occlusions. We can see them by monitoring qualitative performance 

analysis that we include in additional content. In Figure 2, an excellent tracker performance is shown. 

This technique is a great opponent of other tracking frameworks online. While we maintain 

competitive MOTA grades, track fragmentation, and false negatives, the smallest number of online 

method identity switches are returned by our method. In Figure 3, with other available methods on the 

MOT17 benchmark, you can see the accuracy of the proposed process. 

 

 
Figure 3: Quantitative comparison plots for the MOT17 benchmark [38] for multi-object tracking 

accuracy (MOTA). 

 

Conclusions 
We suggest promising tracking methods by applying the Particle filter and deep convolutional 

network. In order to extract effective features for good and stable tracking, we use deep learning 

methods. The algorithm can efficiently address appearance changes and occlusion problems in a strict 

manner. The improved approach is superior to conventional tracking approaches in extreme tracking 

conditions on the basis of experimental effects and has slightly decreased numbers of identity changes 

compared to the deep sorting system. 
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