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Abstract

There is a useful method for quick and efficient tracking of multiple
objects called simple online and real-time tracking (SORT). By adding
visual information, SORT algorithm performance can be improved. The
number of identity switches can be minimized by this. A deep network
that is offline on a wide data set of qualified pedestrians has been used
since the main structure of the algorithm has a lot of computational
complexity. In order to extract more and higher quality visual
information that can assist the object recognition algorithm, the focus of
this article is on the design of this deep network. To enhance data
association efficiency, the paper also used a particle filter instead of a
Kalman filter. On two standard datasets, MOT16 and MOT17, we
checked our proposed method and compared its performance with other
available methods. The results indicate that, relative to the current
methods in this area, the tracking accuracy (52.2) on the MOT17
dataset is increased. Experimental assessment demonstrates that in
dynamic settings, our proposed architecture increases the number of
identity switches and preferably tracks goals.

Keywords: Computer Vision, Multiple Object Tracking, Detection, Data
Association, Particle filter
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Introduction

In the accuracy and efficiency of object detectors, especially ordinary detectors, recent developments
have inspired and provoked multi-target tracking methods by noticing them [1, 2]. These techniques
operate in such a way that, by means of a first-rate object detector, they detect the targets for each
frame and these detections are compatible with the application of online and offline trackers [4, 5].
These methods are acceptable in cases such as pedestrian tracking, where the goal feature is
discriminatory and the target shows a simple motion pattern [6,5]. There are trackers, too, that rely less
on appearance than others. In order to get used to the algorithms in these potential situations, they also
need a large number of variables and skills to be tuned [8, 9,11].

Tracking-by detection has recently evolved into the most important model of compound object
tracking, as described earlier, in object recognition. In this way, in a global optimization problem, we
usually find object trajectories, which advance the entire batches of video immediately. Flow network
formulations [5, 14] and probabilistic graphical models [15, 8, 17] are the most common frameworks
of this kind. These methods may not be acceptable in online circumstances in which the target should
be addressed individually, step by step. For each frame base, the Joint Probabilistic Data Association
Filter (JPDAF)[19] and Multiple Hypothesis Tracking (MHT)[18] present the data association. Such
approaches are among the common and traditional techniques that exist in this area.

Since the speed of a large number of accurate trackers is considered too slow for real-time
applications, the fairly obvious trade-off between accuracy and speed is evident. Simple online and
real-time tracking (SORT) [20] is one of the simple frameworks that aims to improve both speed and
precision. By applying the Hungarian approach with an association metric that tests bounding box
overlap, which is Kalman filtering, the output of this method is in image space and data relation for
each frame. At high frame rates, this undemanding technique achieves positive results.

SORT carries out quite a large number of identity transformations. The explanation for this is that
when state evaluation uncertainty is sluggish, the employed association metric is accurate. As a result,
SORT has a lack of blockage tracking since they are usually visible in the front section of camera
views. We alter the place of the association metric with a more informed metric that incorporates
motion and shape data as a solution to this problem. In comparison to deep sorting architectures, we
used the deep neural network to integrate motion and appearance information [21]. We also
substituted a particle filter for the Kalman filter. The value of the algorithm for particle filters is its
simplicity and flexibility. Also, working with the model of the Gaussian multimodality system is
undemanding. A great deal of related literature is given in [42]. Unlike measurement supplies, facts
and data can be used in a particle filter system, which has greatly enhanced the efficiency of tracking.
By a combination of this network, we build toughness against misses and occlusions at the same time
as we keep the framework easy to implement and well-organized and applicable to online scenarios.
The following sections are arranged in this paper: Section 2 provides a brief evaluation of related
literature in the field of multiple object tracking. Until a demonstration of the expected framework
functionality on standard benchmark series in Section 4 is completed, Section 3 proposes our approach
and deep network architecture. Finally, Section 5 provides us with a summary of the findings learned
and addresses future developments.

Related Works

Multi-object tracking has been overcome generally and conventionally by the Joint Probabilistic Data
Association (JPDA) filters [22,23]and Multiple Hypothesis Tracking (MHT) [19]. Despite the fact that
there is considerable uncertainty in object assignments, they postpone making complex decisions. The
number of tracked objects raises the complexity of integrating these techniques, making them
inefficient for simultaneous purposes in highly active environments. In visual multiple object tracking
(MOT), the JPDA formulation [22] is considered by Reza tofighi et al [23]. His aim was to resolve the
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problems of combinational complexity in the resolution of integer programs. Kim et al. [24] applied
the exterior model for every target in order to reduce the MHT chart. she wanted to accomplish state-
of-the-art presentation. Such methods, however, put off the conclusion that online tracking is
unacceptable.

Typical multi-target trackings are known as a network flow problem [5] or its variation [14]. Most of
these methods rely on a large number of object shapes and assume that their goals are basic motion
models. They work well in environments and pedestrians or means of transportation are the goals. One
of the disadvantages of implementing the formulation of a network flow is that it has to plan starting
and finishing positions and/or goal times that might be difficult to define in the future. Brendel et al.
[6], while considering only two-frame relations, applied an extremely serious set formulation.

Zamir et al [26] propose the implementation of a General Maximum Clique partitioning formulation.
This technique selects the largest candidate from each tracklet with the goal of achieving global
association. The formulation of the linear assignment [11,14,15] is comparable with the generalized
linear assignment (GLA). The positive thing about it, however, is that it allows tracks to start and end
anywhere in time and place.

The method of MOT solver is suggested by Braso et al [3]. This approach is based on networks
exchanging messages. To present both function learning and final result estimation, it utilizes the
natural graph problem structure. They propose a novel time-aware neural message passing update
stage that is inspired by classic graph MOT formulations.

The strategy for several tracking techniques is to shape online education models of both objects
[27,29] and the global model [30,33]. Motion is also incorporated to assist related tracklet detection
[34,30], as well as patterns of appearance. When one-to-one correspondence models are considered,
uniformly ideal solutions such as the Hungarian algorithm [35] can be applied [37].

The system of Geiger et al. [37] applies the Hungarian algorithm [35] in a couple of steps process. The
earliest stage is when tracklets are formed with connecting detections from corner to corner of closest
frames, where geometry and type signals are exchanged to shape the similarity matrix. Subsequently,
by using geometry and appearance signals, the tracklets are linked to another to reconnect broken
trajectories caused by occlusion. The union technique of these pair measures restricts this approach to
batch computation.

To develop SORT efficiency, the Nicolai Wojke et al. [21] method combines appearance information.
Throughout longer phases of occlusions, they will follow targets and successfully drop the amount of
identity switched down induced by this Extension. However, as discussed in the following section, we
use new deep network architectures for appearance descriptors.

Methodology

This strategy is expressed through the methodology of standard assumption tracking with recursive
particle filtering and data link for each frame. In the next sections, the various parts of this system and
our anticipated technique will be developed.

Detection and state estimation

The results of identification in data association based on MOT have a strong influence on the
presentation of tracking. The original formulation in [22] is accompanied by both the Detection and
Kalman filtering framework.

Instead of using the Kalman filter, we used the Particle filter to track targets according to the concept
set out in [43], and we were inspired by their concept. In the paper, a target tracking algorithm is
designed that integrates the particle filter and convolution network. In the particle filter system, the
extracted function from convolutional networks is represented. The target local and spatial data are
fully applied in order to indicate the state shift of the entity. The local shape alteration and partial
occlusion problem of the target are best figured out as the global information sections of the particle
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filter are integrated in order to find out the condition of the current targets. This is based on the target
state that is dealt with various details.

We assume a very common tracking situation in which the camera is uncalibrated also there is no ego-
motion data in hand, which is the most popular setup measured in the latest multiple object tracking
benchmarks [38], as stated in [21]. The linear steady fast model, which does not depend on more
objects or camera movement, estimates the inter-frame movements for each object. Every target's
location is designed as:

x = [wv,y b5 8.7 R 1)

Where p and v indicate the horizontal and vertical pixel position of the target center, the aspect ratio v,
height h, and their respective velocities in the image are coordinated. In order to renew the target
location, the detected bounding box is applied, where the velocity mechanism is resolved in the best
and most favorable way by using a particle filter frame when an object is discovered. Basically, by
applying the linear velocity form, the position is predicted without modification if no recognition is
connected to the target. For each track in this method, we count the frame numbers from the prior
effective measurement association. This counter is increased and reorganized to 0 during the
prediction of the particle filter when the track has been linked with a measurement. If the tracks are
over the pre-arranged maximum age, we take them out of the track collection. For any detection that is
not capable of being linked with an access track, a new track hypothesis is arranged. Throughout their
initial three structures, these up-to-the-minute tracks are structured as uncertain. During each time
phase, we look forward to a flourishing measurement association.

Data Association

Each goal bounding box geometry is anticipated in the recent framework by forecasting its new status
while our intention is to define detections for achievable targets. The cost matrix task will be measured
as the intersection-over-union (IOU) space between of recognition and the entire bounding boxes
predicted from the objects presented. The assignment is solved optimally by using the Hungarian
algorithm. We combine details of motion and appearance by arranging two appropriate metrics for this
formulation of the issue.

To formulate a problem, as we discussed earlier, we need to merge motion and appearance data.
Between predicted particle states, we use the Mahalanobis space plus recently arrived evaluations.
Camera motions that are not counted could lead to rapid disarticulations in the image surface,
especially by making the Mahalanobis distance another unconscious metric for tracking through
occlusions. It is therefore so much easier to combine the second metric into the assignment problem.
For each bounding box detection, a shape descriptor r; with ||»|| =1is determined. Gallery
R, = {5 %%, of the last Ly = 100 descriptors of the connected form are kept for each k track. After
that, the smallest cosine space between the i-th track and j-th identification in shape space is the
following metric procedure:

d (1) = min {1- 7" |0 e R ;

The Mahalanobis distance offers details about possible positions of objects based on short-term
predictions of motion that are especially realistic. Whereas, when movement is less discriminatory, the
cosine space considers type data that are fundamentally realistic in the direction of enhancing
identities later than long-term occlusions.
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Appearance Feature

The space between shape characteristics is used to compute the significance of similarity in data
association. For comparable identity individuals, the importance of affinity must be outsized and broad
and undersized for individuals with different identities, based on the optimal and desirable appearance
characteristics. The appearance function in our operation is extracted by using a network that is
presented in Figure 1 and Tablel in our network architecture.

On the basis of the results and experiences obtained, it can be said that in deep learning, the deeper the
network, the better the network's accuracy, given that there are no problems with the vanishing
gradient. Therefore, we tried to improve the precision of detection in the proposed architecture by
deepening the grid and also using residual layers to prevent the gradient from disappearing. On MARS
data collection, this method has been achieved and contains more than 1,100,000 images of 1,261
pedestrians, which makes this entirely appropriate for deep metric learning in the situation of people
monitoring.

Table 1. Overview of the CNN architecture

Name Patch Size/Stride Output Size
Conv 1 7x7/1 32x128x64
Conv 2 5x5/1 32x128x64
Conv 3 3x3/1 32x128x64
Batch and normalization 32x128x64
Max Pool 4 3x3/2 32x64%32
Residual 5 3x3/1 32x64x32
Residual 6 3x3/1 32x64x32
Residual 7 3x3/2 64x32x16
Residual 8 3x3/1 64x32x16
Residual 9 3x3/2 128x16x8
Residual 10 3x3/1 128x16x8
Residual 11 3x3/2 256x8x4
Residual 12 3x3/1 256x8x4
Conv 13 3x3/1 256x8x4
Conv 14 1x1/1 256x8x4
Batch and normalization 256x8x4
Avg Pool 15 3x3/2 256x4x%2
Dense 15 256
Dense 16 256
Batch and normalization 256
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Figure 1. Overview of the CNN architecture
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Usually, our network is made of two elements. With phase 1 and similar padding in the first section,
four convolutional layers are added. We have also applied batch normalization between every sheet.
Batch normalization reduced the quantity through the movement of the concealed unit values
(covariance shift). Batch normalization helps every network layer to learn that it is also more
independent of other layers. In the next part, we added the eight remaining blocks of different sizes,
one after the other. We increase the depth of the network to increase accuracy and minimize the
amount of changes in individuality. We applied two compact layers of 250 as a final point in order to
estimate the global feature map. And, right after adding a batch normalization layer, the final network
output is achieved.

It is important to learn decent mappings for unintentional initialization of weights from input to output
in neural networks. There are some local minimums that may be trapped by back propagation since
there is a large search space that includes several weights in training. On the other hand, the
randomization function of weight initialization must be selected and carefully defined unless there is a
great risk that the production of preparation has decreased to the point of uselessness.

The Adam optimizer algorithm with a 1e-3 rate of learning was used in the learning process of this
network. In a learning process of 200,000 iterations, the latest outcome of our proposed system, shown
in Table 2 and Table 3, is obtained.

TABLE 2. Performance of the proposed approach on MOT16 benchmark sequences

Method MOTA IDFL MT ML FP FN IDsw
GCRA[3] 482 486 12.9% 41.1% 5104 88586 821
0ICF [7] 432 493 11.3% 485% 6651 96515 381
MOTDT[10] 476 509 152% 38.3% 9253 85431 792
LMP[12] 488 513 182% 40.1% 6654 86245 481
NOMTI[31] 464 533 18.3% 41.4% 9753 87565 359
MCjoint[13] 471 523  204% 46.9% 6703 89368 370
DMMOT[16] 461 548  17.4% 42.7% 7909 89874 532
Deep SORT[21] 614 - 32.8% 182% 12852 56668 781
Our method 579 497  29.9% 20.5% 5850 70985 330

TABLE 3. Performance of the proposed approach on MOT17 benchmark sequences

Method MOTA IDFL MT ML FP FN IDsw
MHT_DAM[24] 50.7 472 20.8% 36.9% 22875 252889 2314
FWT [33] 513  47.6 21.4% 352% 24101 247921 2648
HAM_SADF17[41] 483 511 17.1% 41.7% 20967 269038 1871
EDMT17[32] 500 513 21.6% 36.3% 32279 247297 2264
MOTDT17[10] 50.9 527 175% 357% 24069 250768 2474
jcCI32] 512 545 20.9% 37.0% 25937 247822 1802
DMANI[16] 482 557 10.3% 38.3% 26218 263608 2194
TNT[25] 519 580 235% 355% 37311 231658 2294
Our method 522 561 21.3% 37.1% 26857 237594 1774

We applied the Xavier or variance scaling approach for weight initialization. Compared with the
immature weight scaling technique, the Xavier weight initialization technique is a great development.
This technique helped us to increase the pace of the field of deep learning in a great way. It thus adapts
itself according to the quantity of the weight values. The principle of these methods is that if you can
keep the variance constant layer by layer in either the feed-forward or back-propagation direction,
your network can learn optimally. Your weight will ultimately saturate your non-linear neurons in

SC

VWorid SGence Ciation Center

1



pwm“wwbﬁm a

bl Ex
ReeE ()ﬂl
IRANIAN STUDENT CONFERENCE e
ON ELECTRICAL ENGINEERING k2 T enr s

both positive and negative directions as you go through the layers, as if the variance boosts or
decreases. This initialization was established to work better with the activation functions of ReLU in
general, because in this network we apply the activation function of ReLU:

vnr{w,-] = i (3)
Min

W represents the weights in the above formula and n represents the number of inputs for each node.
This network essentially consists of 4,654,764 parameters and one forward pass of 32 bounding boxes
that take on Nvidia Titan XP for around 19 ms. So, this network is suitable for online tracking if a
modern GPU is available.

Experiments

In order to teach and evaluate our tracking performance, which includes either moving or static camera
sequences, we use MOT16 and MOT17 datasets. In addition to top-down observation arrangements,
this benchmark estimates the tracking output on seven challenging test sequences that involve front-
view scenes with a movable camera. Together with the MOT metrics [41], we use the assessment
metrics defined in [40]:

MOTA(1): Multi-object tracking accuracy.

IDF1(1): the ratio of correctly identified detections over the average number of ground-truth and
computed detections.

MT(?1): the amount of mostly tracked trajectories. i.e. target has a similar label for at least 80% of its
life span.

ML(]): the amount of mostly lost trajectories. i.e. target is not tracked for at least 20% of its life span.
FP(]):the amount of false detections.

FN(]):the amount of missed detections.

IDsw( }):the amount of times ID switches to a dissimilar formerly tracked purpose.

Estimation procedures with (1), upper scores signify improved performance; while for evaluation
procedures with (), minor scores denote better performance.

Figure 2: In an ordinary tracking situation with normal occlusion, our system representative
performance on the MOT challenge data collection.

In order to apply the MOT benchmark [38] test server, tracking output is calculated where the ground
precision is suspended for 11 sequences. In Table 2 and Table 3, several other baseline trackers are
assessed with the suggested SORT process. This strategy has effectively eased the number of identity
switches.

We understand that a small increase is primarily the number of tracked objects and the decrease in
usually missing objects. Generally, due to the combination of appearance details, we effectively
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maintain identities through longer occlusions. We can see them by monitoring qualitative performance
analysis that we include in additional content. In Figure 2, an excellent tracker performance is shown.
This technique is a great opponent of other tracking frameworks online. While we maintain
competitive MOTA grades, track fragmentation, and false negatives, the smallest number of online
method identity switches are returned by our method. In Figure 3, with other available methods on the
MOT17 benchmark, you can see the accuracy of the proposed process.

0.9 s1.2
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Figure 3: Quantitative comparison plots for the MOT17 benchmark [38] for multi-object tracking
accuracy (MOTA).

ACCURACY

Conclusions

We suggest promising tracking methods by applying the Particle filter and deep convolutional
network. In order to extract effective features for good and stable tracking, we use deep learning
methods. The algorithm can efficiently address appearance changes and occlusion problems in a strict
manner. The improved approach is superior to conventional tracking approaches in extreme tracking
conditions on the basis of experimental effects and has slightly decreased numbers of identity changes
compared to the deep sorting system.
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