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Abstract

The Motor Imagery (MI) classification task is a high dimension multivariate and complicated subject. In this respect, the original signals are analyzed and minimal unique features of the classes are extracted to facilitate accurate classification of the actions performed. The fusion of common spatial pattern, Fisher discrimination ratio, and filter bank alongside the SVM and CNN-LSTM are incorporated to provide accurate clustering. As a result and after extensive simulations, it is shown that the CSP+ FDR + CNN-LSTM setup more accurately differentiates the classes.
                   Keywords: Motor Imagery Classification, SVM, LSTM, CSP
1 Introduction
People with neurological disease may find trouble ‎in walking, speaking, and writing due to the lack of ‎functioning of the motor control. Brain-computer ‎interface (BCI) technology can help them to back to ‎the quality of normal life. 

The problem of systems action interpretation may be employed by model-based Nemati and Seyedtabaii 2020(, Shams and Seyedtabaii 2020)
 and/or signal-based 
 ADDIN EN.CITE 
(Qaedi and Seyedtabaii 2012, Seyedtabaii 2012, Fasihipour and Seyedtabaii 2020)
 approaches; wherein the case of MI the signal based is favorite. Low SNR, fewer data, and being multi-channels are among the difficulties related to this ‎study. Signal-based BCI consists of two modules: feature extraction and ‎command interpretation. ‎
In this respect, a new CNN architecture to ‎introduce the temporal representation of the data ‎for MI classification is presented in Saputra, Setiawan et al. 2019()
. ‎Regarding multi-class MI signal analysis, the classification of multi-class motor ‎imagery with a novel hierarchical SVM algorithm for ‎brain-computer interfaces has been detailed in Dong, Li et al. 2017()
. A novel hybrid deep learning ‎scheme for four-class motor imagery classification ‎has been investigated in Zhang, Zong et al. 2019()
. Recurrent Deep Learning for EEG-based ‎motor imagination recognition has been detailed in ‎‎Rammy, Abrar et al. 2020()
. Adaptive transfer learning for ‎EEG motor imagery with deep ‎Convolution Neural Network is the subject of study ‎in Zhang, Robinson et al. 2021()
. An EEG Channel ‎Selection Method for motor imagery-based brain-computer interface and neurofeedback using ‎Granger causality has been introduced in Varsehi and Firoozabadi 2021()
. In Wang, Huang et al. 2020()
, ‎temporal-spatial-frequency depth extraction of brain-computer interface based on mental tasks has been ‎described. A CNN with a hybrid convolution scale for ‎EEG motor imagery classification is reported in Dai, Zhou et al. 2020()
. Recognizing single-trial motor ‎imagery EEG based on interpretable clustering ‎method is investigated in Fu, Li et al. 2021()
. ‎Adaptive spatiotemporal graph convolution ‎nnetworks for MI classification has been ‎suggested in Sun, Zhang et al. 2021()
.‎
In this paper, four-class MI classification algorithms are studied. ‎Various features from the common spatial pattern (CSP), filter bank idea, and Fisher discrimination ratio (FDR) are derived. Both SVM and CNN-LSTM deep learning are utilized for the classification where the best results obtained are the product of the CSP+FDR+CNN+LSTM algorithm.

The paper is organized as follows. In Section 2, the ‎basic sub-algorithms used are briefly described. Section 3 ‎introduces the setups of two algorithms and their variations ‎for the MI classification and lastly, the conclusion comes in section 5.‎

2 Brief description of Sub-Algorithms

Basic CSP

Consider two ‎tasks, H and F where each has been tried M times ‎and the recorded signals are XH(i)∈ RN(T  and XF(i)∈ RN(T where N is the number of channels and T is the number of samples. The main idea is to use a linear transformation to ‎project the two sets of the multi-channel EEG data into another space with maximum distance to be easily classified. In the multiclass cases, where one versus rest (OVR) is requited, the following average for the rests are employed,
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The normalized spatial covariance of the two ‎matrixes and their averages are computed using the ‎following equations Wang, Gao et al. 2006()
, ‎
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where C* is an N by N matrix. Trace(A) computes the ‎sum of the diagonal elements of A. Then, the following composite spatial covariance is ‎calculated and decomposed as below, ‎
‎
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where U is the eigenvectors and R is the ‎diagonal matrix of eigenvalues. The results are multiplied by the whitening ‎transformation matrix as below, ‎
 ‎ ‎
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The eigenvectors with the largest eigenvalues of ‎SH have the smallest eigenvalues in SF and vice ‎versa. Thus, by employing the projection matrix W, the original samples are converted to the uncorrelated Z counterparts,


 
[image: image5.wmf]T

WUPZWX

=Þ=


(2)
The columns of W–1 are the CSPs filters. For order reduction, d rows from the top and bottom of Z  are selected for ZR  which often d=1 is considered to be adequate Jamaloo and Mikaeili 2015()
. 
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 Signal features 
From ZR, the scalar row variances are the features that are fed to the classifier section Olivas-Padilla and Chacon-Murguia 2019()
,
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(5)
where j is the ZR rows, M the total number of trials, and t is the signal samples.

Fisher’s discriminant ratio 

The Fisher criterion for optimal class separability aims at maximizing the between class-variance while minimizing the within class-variance, i.e., the distance between the feature vectors from the same class. This is done by the V vector mapping the feature from one space to another with better classification capacity Veksler()
.


ff=V’f
(6)
where f is the feature vector (5) and V is the FDR transformation matrix.

FILTER BANK (FB) 

Physiologically, the content of the discriminative information in the different frequency ranges differs for individuals. Therefore, decomposing the signal in terms of filter bands is helpful in better MI signal classification Park, Lee et al. 2017()
. By filtering the signals into K bands, the covariance matrix for each band is obtained,
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and then separately undergoes the CSP operation for each band and the feature vector f is computed. The best band is the one with the highest d computed below,
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LSTM (long short-term memory)
 LSTM has three layers Wiki()
. The first layer is defined by the following equations which receives the input pattern xt and the past hidden layer output ht-1 to produces,
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where b*, W*, it, and C̅t are the biases, weights, input gate, and the input tangent hyperbolic function output. 
The second layer is described by,
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where ft is the forgetting gate and Ct is the updated cell output. 
Finally, the output of the current state and the hidden layer output are calculated as below,
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Convolutional  Neural Network (CNN) 

CNNs are comprised of four layers Wiki()
. These are input layers, convolutional layers, pooling layers, and fully connected network layers. 

The input layer holds the input pattern.

The convolutional layer with l hidden layers operates as given by the following equations,
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where bl, xl, wl, and R are the bias, input pattern, weight, and the rectified linear unit(RELU) of the lth hidden layer.

The pooling layer will then simply perform downsampling along with the spatial dimensionality of the given input, further reducing the number of parameters within that activation.

The fully connected layers will then perform the same as the conventional neural network for classification.

 SUPPORT VECTOR MACHINE (SVM)

SVM is a binary classifier that linearly optimally maps the input x onto binary decision variable y∈ [±1]. In the case of linear separation, the problem is expressed by the following optimization problem,
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where y∈[1,-1] is the class label, x is the input, b is the bias, and ϵ is the margin which improves the performance in a case of not linearly separable problems. By minimizing w, the size of M gap between the two classes is maximized.  

3  MI classification Methods

Data set

The dataset used in this study was taken from BCI ‎competition IV-II-a provided by Graz University BCI()
. It ‎includes signals with the following specifications:‎
· ‎9 healthy subjects‎ 

· 4 operations: movement of the left hand, right hand, both feet, and tongue. ‎
· 22 EEG channels: The signals were sampled at 250 Hz and band-pass ‎ﬁltered between 0.5 Hz and 100 Hz and notch ‎ﬁltered at 50Hz.‎
· ‎‎ 6 runs per subject per session. ‎
· ‎12 trial * 4 task for each run per subject (72 trail per ‎task per subject and overall of 288 trial per subject )‎
The μ rhythms (8–12 Hz) and β rhythms (14–30 Hz) ‎of EEG signals amplitudes and powers vary due to the intention for performing actions. In addition, the high-frequency components in ‎EEG signals were usually nebulous, so the raw EEG ‎signals were filtered by a band-pass filter (3–34 Hz).‎
Therefore, there are 288 matrices of X(N, T) with 22 ‎channels by 315 samples. From the 72 trials, 50 trails are randomly ‎assigned for training and the remaining 22 trails are assigned for the ‎test and validation.  A sample of X signal has been shown in ‎Fig. 1‎
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Fig. 1.    One of the trials

3-1  SVM classification
In this section, several feature extraction approaches are incorporated and a set of SVMs are utilized for the MI classification. 
 CSP+SVM‎
In this approach, four similar parallel classifiers are developed where each takes care of one of the classes. The algorithm configuration for Class 1 is as below:

Preprocessing: 

· Class 1 is introduced as XH and the rest as XF (1).  

· XH and XF are used for computing W∈ R22(22 using (2).

Training

· Randomly 50 samples of XH and XF are picked for training

· They are multiplied by W for Z (2)

· 2D f∈ R2(100 is obtained using (3) and (5).

· f is applied to SVM for training.

Test 

· 72 samples of both XH and XF are multiplied by W for Z (2)

· 2D f∈ R2(144 is obtained using (3) and (5).

· f is applied to SVM for the test.

The test success rates are presented in the training, test, and overall groups as depicted in Table I. 

CSPFDR+HSVM
In this test, 10 classifiers with almost similar configurations are arranged. 6 for one versus one (OVO) and 4 for one versus rest (OVR) using (1). The basic algorithm configuration for the distinction between Class one and the rest is as below.

Preprocessing: 

· Class 1 is introduced as XH and the rest as XF (1). In the case of OVO, XF is the second class. 

· XH and XF are used for computing W∈ R22(22 using (2).

· ZR(i)∈ R2(313 is computed using (3)

· f∈ R2(144 is calculated for both classes and by using FDR (6) the vector V is derived.

Training

· Randomly 50 samples of XH and XF are picked for training

· They are multiplied by W for Z (2)

· 2D f∈ R2(100 is obtained using (3) and (5).

· f is multiplied by V of FDR to generate the input pattern ff for SVM training.

Test 

· 72 samples of both XH and XF are multiplied by W for Z (2)

· 2D f∈ R2(144 is obtained using (3) and (5).

· f is multiplied by V and applied to SVMs for the test.

· If there is no conflict in the results of OVR classifiers the success rate is 100% and no further action is required.

· If there is a conflict between 2, 3, and 4 of the classes, their OVO counterpart classifiers will judge the situation for discrepancy removal Dong, Li et al. 2017()
.

The test success rates are presented in the training, test, and overall groups as depicted in Table I. Besides their confusion matrixes have also been provided in Fig. 2.
[image: image16.emf]1 2 3 4

Target Class

1

2

3

4

O

u

t

p

u

t

 

C

l

a

s

s

Subject1: Overall-CSPFDR+HSVM

63

21.9%

9

3.1%

0

0.0%

0

0.0%

87.5%

12.5%

7

2.4%

54

18.8%

10

3.5%

1

0.3%

75.0%

25.0%

16

5.6%

0

0.0%

56

19.4%

0

0.0%

77.8%

22.2%

5

1.7%

1

0.3%

1

0.3%

65

22.6%

90.3%

9.7%

69.2%

30.8%

84.4%

15.6%

83.6%

16.4%

98.5%

1.5%

82.6%

17.4%

[image: image17.emf]1 2 3 4

Target Class

1

2

3

4

O

u

t

p

u

t

 

C

l

a

s

s

Subject1: Train-CSPFDR+HSVM

44

22.0%

6

3.0%

0

0.0%

0

0.0%

88.0%

12.0%

5

2.5%

39

19.5%

5

2.5%

1

0.5%

78.0%

22.0%

11

5.5%

0

0.0%

39

19.5%

0

0.0%

78.0%

22.0%

3

1.5%

1

0.5%

0

0.0%

46

23.0%

92.0%

8.0%

69.8%

30.2%

84.8%

15.2%

88.6%

11.4%

97.9%

2.1%

84.0%

16.0%

[image: image18.emf]1 2 3 4

Target Class

1

2

3

4

O

u

t

p

u

t

 

C

l

a

s

s

Subject1: Test-CSPFDR+HSVM

19

21.6%

3

3.4%

0

0.0%

0

0.0%

86.4%

13.6%

2

2.3%

15

17.0%

5

5.7%

0

0.0%

68.2%

31.8%

5

5.7%

0

0.0%

17

19.3%

0

0.0%

77.3%

22.7%

2

2.3%

0

0.0%

1

1.1%

19

21.6%

86.4%

13.6%

67.9%

32.1%

83.3%

16.7%

73.9%

26.1%

100%

0.0%

79.5%

20.5%


Fig. 2.   The CSP+FDR+HSVM confusion matrixes
FB+CSP+HSVM
In this test also 10 classifiers with almost similar configurations are arranged. 6 for one versus one (OVO) and 4 for one versus rest (OVR) using (1). The basic algorithm configuration for the distinction between Class one and the rest is as below.

Preprocessing: 

· Class 1 is introduced as XH and the rest as XF (1). In the case of OVO, XF is the second class.

· XH and XF are partitioned into 5 filter banks, XH,k, and XF,k , k=1,…,5. 

· XH,k, and XF,k, are used for computing Wk∈ R22(22 using (2).

· ZR,k(i)∈ R2(313 is computed using (3)

· fk∈ R2(144 is calculated for both classes.

· The best bank k0 is selected using (7).

Training

· Randomly 50 samples of XH and XF are picked for training

· By filter banks, XH,k0 and XF,k0 are picked

· They are multiplied by Wk0 for Z (2)

· 2D f∈ R2(100 is obtained using (3) and (5).

· f is the input pattern for SVM training.

Test 

· 72 samples of EEG signal go through the filter bank for XH,k0, and XF,k0.

· XH,k0, and XF,k0 are multiplied by Wk0 for Z (2)

· 2D f∈ R2(144 is obtained using (3) and (5).

· f is applied to SVMs for the test.

· If there is no conflict in the results of OVR classifiers the success rate is 100% and no further action is required.

· If there is a conflict between 2, 3, and 4 of the classes, their OVO counterpart classifiers will judge the situation for discrepancy removal Dong, Li et al. 2017()
.
The test success rates are presented in the training, test, and overall groups as depicted in Table I. 
TABLE I.  Algorithms’ performances

	
	
	Class 1
	class 2
	class 3
	class 4
	Overall

	CSP+SVM
	train

test

overall
	68.0

50.0

62.5
	78.0

54.5

70.8
	52

27.3

44.4
	86

81.8

84.7
	71.0

53.4

65.69

	CSP+FDR+

HSVM
	train

test

overall
	88.0

86.4

87.5
	78.0

68.2

75.0
	78.0

77.3

77.8
	92.0

86.4

90.3
	84.0

79.5

82.6

	FBCSP+

HSVM
	train

test

overall
	100.0

86.4

95.8
	100.0

59.1

87.5
	100.0

31.8

79.2
	100.0

45.5

83.3
	100.0

55.7

86.5


3-2 CSP+ Deep learning

The CNN-LSTM configuration shown in Fig. 3 is used for MI classification where the OVR features first derive separate CNNs and the result is applied to LSTM for final multiclass MI classification. Various tests using different features are conducted which are detailed in the sequel.
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Fig. 3.   The CNN-LSTM configuration
CSP+CNN-LSTM

In this test, four OVR features are calculated and applied to CNN-LSTM for test and training as elaborated below,
Preprocessing:
· Similar to CSP+SVM calculate Wm for the mth OVO case.
Training
· Randomly pick 50 samples of XH, and XF for training

· They are multiplied by Wm for Z (2)

· Overall ZR∈ R(4*10)×100 is obtained using (3) and (5) which is applied to CNN-LSTM for training. Five from the top and five from the bottom of Z are selected.
Test 

· XH and XF are multiplied by their corresponding Wm for Z (2)

· ZR∈ R(4*10)×100 features are applied to the CNN-LSTM for the test.

The test success rates are presented in the training, test, and overall groups as depicted in Table II.

CSP+FDR+CNN-LSTM

In this test, four OVR features are computed and applied to CNN-LSTM as below,
Preprocessing:
· Class m is introduced as XH and the rest as XF (1).  

· XH,m, and XF,m are used for computing Wm∈ R22(22 using (2).

· ZR,m(i)∈ R4(313 is computed using (3)(2 from the top and 2 from the bottom)

· fm∈ R4(1 is calculated for both classes and by using FDR (6) the vector V is derived 

Training
· Randomly 50 samples of XH, and XR are picked for training

· They are multiplied by Wm for Z (2)

· fm∈ R(4*4)(100 is obtained using (3) and (5).

· f is multiplied by V of FDR to generate the input pattern ff ∈ R(4*4)(100 for CNN-LSTM training.

Test 

· 72 samples of  both XF,m and XR,m are multiplied by Wm for Zm (2)

· fm∈ R(4*4)(144 is obtained using (3) and (5).

· fm is multiplied by V for ff ∈ R(4*4)(144 and applied to CNN-LSTMs for the test.

The test success rates are presented in groups of training, test, and overall as depicted in Table II. 

FBCSP+CNN-LSTM

A filter bank is employed to decompose the EEG in every time window into 16 frequency passbands by using causal Chebyshev Type II filter

Preprocessing: 
· Class m is introduced as XF,m, and the rest as XR,m (1). 
· XF,m and XR,m are partitioned into 16 filter banks, XF,m,k and XR,m,k , k=1,…,16. 

· XF,m,k, and XR,m,k are used for computing Wm,k∈ R22(22 using (2).

· ZR,mk(i)∈ R4(313 is computed using (3)

· fm,k∈ R4(144 is calculated for both classes.

Training
· Randomly 50 samples of XF and XR are picked for training

· They are multiplied by Wk,m for Z (2)

· ZR is obtained using (3).

· f∈ R(16*4*10)*100 is calculated for all classes for training where 16, 4 and 10 stand for the number of filter banks, the number of classes and the numbers of rows of Z, picked for classification.
Test 

· 72 samples of EEG signal go through the filter banks for XF,k,m, and XR,k,m.

· f ∈ R(16*4*10)*144 is obtained using (3) and (5) and is applied to the CNN-LSTM for test
The test success rates are presented in the training, test, and overall groups as depicted in Table II. 
TABLE II.  Table II The results obtained using CNN-LSTM classifier.
	
	
	Class 1
	class 2
	class 3
	class 4
	Overall

	CSP+

CNN-LSTM
	Train

Test

Overall
	100.0

45.54

83.83
	100.0

59.09

87.50
	100.0

31.82

79.17
	100.0

63.64

88.89
	100.0

50.0

84.72

	CSP+FDR+

CNN-LSTM
	Train

Test

Overall
	100.0

70.0

100.0
	100.0

80.45

98.61
	100.0

70.0

100.0
	100.0

86.45

98.61
	100.0

76.73

92.8

	FBCSP+

CNN-LSTM
	Train

Test

Overall
	100.0

27.27

77.78
	100.0

77.27

93.06
	100.0

40.91

81.94
	100.0

59.09

87.50
	100.0

51.14 

85.07


4 Conclusion

In this paper, a four-class MI classification is studied. Features from the common spatial pattern (CSP), Fisher discrimination ratio (FD) are integrated to provide distinctive features for SVM and deep learning classifiers. The results indicate that the algorithm consists of CSP+FDR+CNN+LSTM yields the best success rate as high as 92%. -
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